Roll No

MCA-301

M.C.A. III Semester

Examination, November 2019

Computer Oriented Optimization Techniques

Time: Three Hours

Maximum Marks: 70

7

7

Attempt any five questions. Note: i)

- All questions carry equal marks
- Use graphical method to solve the L.P.P.

Maximize
$$Z = 2x_1 + x_2$$

subject to, $x_1 + x_2 \le 5$

$$x_1 + x_2 \le 4$$

and
$$x_1, x_2 \ge 0$$
.

Solve the following L.P.P using Simplex method.

Maximize
$$Z = 6x_1 + 4x_2$$

subject to,
$$2x_1 + 3x_2 \le 100$$

$$4x_1 + 2x_2 \le 120$$

Sources

$$x_1, x_2 \ge 0.$$

Find the initial feasible solution by VAM for the following transportation problem:

$Destinations \rightarrow$	D_{i}
,	$\overline{}$

D₄ Supply↓ 50 10 S_2 70 30 40 60 70 20 40 8

14 8 7 Demand 5

8

7

9

MCA-301

There are six jobs each of which must go through the two machines in the order AB. Processing times are given in the table below

Job	:	1	2	3	4	5	6
Machine A	:	5	9	4	7	8	6
Machine B	:	7	4	8	3	9	5

Determine a sequence for the six jobs that minimize the total Elapsed time, also find the Elapsed time.

- Distinguish between CPM and PERT.
 - A small maintenance project consists of the following jobs whose precedence relationships is given below: 7

Jobs	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
Duration	15	15	3	5	8	12	-	14	3	14
(Days)										

- Draw an arrow diagram
- Find the total float for each activity
- iii) Find the critical float for path and the total project duration.
- Discuss the Queuing Model (M/M/S: N/FCFS).
 - A particular item has a demand of 9000 units/year the cost of one setup is Rs.100, and the holding cost per unit is Rs.2.40 per year. The production is instantaneous and no shortages are allowed. Determine: 7
 - The economic lot size
 - The number of orders per year
 - iii) The total cost per year of the cost of one unit is Rs.1.

- 5. a) What are the advantages and disadvantages of having Inventory?
 - b) Trains arrive at the yard every 15 minutes and service time is 33 minutes. If the capacity of the yard is limited to 4 trains, find:
 - i) The probability that the yard is empty
 - ii) The average number of train in the system.
- 6. a) Write algorithm for solving integer programming problem using Branch and Bound Method.

7

Solve the following assignment problem:

				200		
		I	II	MI	IV	V
	Α	1	3111	3	8	2
	В	7	9	12	5	10
Person	C	15	2	8	10	7
	D	6	5	3	2	8
	E	9	15	20	6	30

- 7. a) What are the three time estimates used in the context of PERT? How are the expected duration of a project and its standard deviation calculated?
 - b) A supermarket has two girls serving at the counters. The customers arrive in a Poisson fashion at the rate of 12 per hour. The service time for each customer is exponential with mean 6 minutes. find:
 - The probability that an arriving customer has to wait for service.
 - ii) The average number of customers in the system
 - The average time spent by a customer in the supermarkets.

- 8. a) Define:
 - i) Slack and surplus variables
 - ii) Deterministic and probabilistic models
 - b) Use the dynamic programming to solve the L.P.P. 7

7

Maximize
$$Z = x_1 + 9x_2$$

Subject to,
$$2x_1 + x_2 \le 25$$

$$x_2 \le 11$$

and
$$x_1, x_2 \ge 0$$
